Dandan ZHANG1,Ruiwen JIAO1,Chunxiao MI1,Ju CHEN1,Xiang LI1,2,3,Qiukuan WANG1,2,3,Dandan REN1,2,3,Yunhai HE1,2,3,Long WU1,2,3,Hui ZHOU1,2,3
(
Abstract
Carbohydrates play a vital role in food science, medicine science, life science and other fields. Carbohydrates can be divided into monosaccharides, oligosaccharides, and polysaccharides, among which monosaccharides and oligosaccharides are mostly soluble, which can not only serve as structural substances, but also have various biological activities such as antioxidant, anticancer, antibacterial, and antiviral activities. Hydrophilic interaction chromatography makes up for the deficiency of reversed-phase liquid chromatography in the separation of carbohydrates. This paper reviews the stationary phases including amino bonded stationary phase, amide bonded stationary phase, carbohydrate bonded stationary phase and zwitterionic bonded stationary phase used in hydrophilic interaction chromatography for the separation and analysis of monosaccharides and oligosaccharides during 2017–2022, and summarizes the effects of chromatographic separation conditions such as acetonitrile content, buffer salt concentration, mobile phase pH and column temperature on the hydrophilic separation efficiency so as to provide a reference for the separation and analysis of monosaccharides and oligosaccharides.
References
[1]
HLADYSH S, OLESHCHUK D, DVOŘÁKOVÁ J, et al. Comparison of carboxybetaine with sulfobetaine polyaspartamides: nonfouling properties, hydrophilicity, cytotoxicity and model nanogelation in an inverse miniemulsion[J]. Journal of Applied Polymer Science, 2022, 139(19): 52099. DOI:10.1002/APP.52099.
[2]
SELINA G. Saccharide polymers containing a small number of monosaccharides[J]. Journal of Glycobiology, 2021, 10(4): 1-2.
[3]
LI S C, LV M, ZHANG S Y, et al. Advances on monosaccharides and oligosaccharides: structural modifications and bioactivities[J]. Mini Reviews in Medicinal Chemistry, 2021, 21(17): 2551-2566. DOI:10.2174/1389557521666210125145321.
[4]
KIMURA M, OGURA M, AKAMATSU M, et al. Convenient preparation of an antigenic oligosaccharide from white kidney bean powder: a useful plant oligosaccharide for synthesis of immunoactive glycopolymer[J]. International Journal of Biological Macromolecules, 2020, 153: 1016-1023. DOI:10.1016/j.ijbiomac.2019.10.231.
[6]
SÝKORA D, ŘEZANKA P, ZÁRUBA K, et al. Recent advances in mixed-mode chromatographic stationary phases[J]. Journal of Separation Science, 2019, 42(1): 89-129. DOI:10.1002/jssc.201801048.
[7]
ZHANG L, DAI Q, QIAO X Q, et al. Mixed-mode chromatographic stationary phases: recent advancements and its applications for highperformance liquid chromatography[J]. TrAC Trends in Analytical Chemistry, 2016, 82: 143-163. DOI:10.1016/j.trac.2016.05.011.
[8]
WANG J Z, WANG J S, NING X H, et al. pH-Dependent selective separation of acidic and basic proteins using quaternary ammoniation functionalized cysteine-zwitterionic stationary phase with RPLC/IEC mixed-mode chromatography[J]. Talanta, 2021, 225: 122084. DOI:10.1016/j.talanta.2021.122084.
[9]
NOUWADE K, TFAILI S, CHAMINADE P. Investigation of stationary phases performance for eicosanoids profiling in RPHPLC[J]. Analytical and Bioanalytical Chemistry, 2021, 413(26): 6551-6569. DOI:10.1007/s00216-021-03618-8.
[10]
LIU J, LI J, YI D, et al. Non-derivatization strategy for the comprehensive characterization of neutral monosaccharide isomers and neutral disaccharide isomers using hydrophilic interaction liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry[J]. Journal of Chromatography B, 2021, 1185: 122972. DOI:10.1016/j.jchromb.2021.122972.
[11]
LI Y Q, LIU S, ZHANG Q Y, et al. Sustainable hydrophilic ultrasmall carbonaceous spheres modified by click reaction for highperformance polymeric ion chromatographic stationary phase[J]. Journal of Chromatography A, 2022, 1663: 462762. DOI:10.1016/J.CHROMA.2021.462762.
[13]
ZHANG K, CAO M Y, LOU C Y, et al. Graphene-coated polymeric anion exchangers for ion chromatography[J]. Analytica Chimica Acta, 2017, 970: 73-81. DOI:10.1016/j.aca.2017.03.015.
[14]
ALPERT A J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds[J]. Journal of Chromatography A, 1990, 499: 177-196. DOI:10.1016/s0021-9673(00)96972-3.
[15]
QIAO L Z, LI H, SHAN Y H, et al. Study of surface-bonded dicationic ionic liquids as stationary phases for hydrophilic interaction chromatography[J]. Journal of Chromatography A, 2014, 1330: 40-50. DOI:10.1016/j.chroma.2014.01.020.
[16]
GENG H L, JING J, ZHANG F F, et al. A polar stationary phase obtained by surface-initiated polymerization of hyperbranched polyglycerol onto silica[J]. Talanta, 2020, 209: 120525. DOI:10.1016/j.talanta.2019.120525.
[17]
HARSHITHA S, SANTHOSH S R, HUSSAIN B S, et al. Hydrophilic interaction liquid chromatography (HILIC): a powerful separation technique[J]. Journal of Drug Metabolism Toxicology, 2020, 11(4): 1-6. DOI:10.1007/s00216-011-5308-5.
[20]
LINDEN J C, LAWHEAD C L. Liquid chromatography of saccharides[J]. Journal of Chromatography A, 1975, 105(1): 125-133. DOI:10.1016/j.ijbiomac.2019.10.231.
[23]
SONG L J, ZHANG H J, CHEN J, et al. Imidazolium ionic liquidsderived carbon dots-modified silica stationary phase for hydrophilic interaction chromatography[J]. Talanta, 2020, 209: 120518. DOI:10.1016/j.talanta.2019.120518.
[24]
GUO D D, YANG C X, QIU R C, et al. A novel imidazolium bonding stationary phase derived from N-(3-aminopropyl)-imidazole for hydrophilic interaction liquid chromatography[J]. Journal of Chromatography A, 2020, 1625: 461331. DOI:10.1016/j.chroma.2020.461331.
[26]
QU J B, XU Y L, LIU J Y, et al. Thermo-and pH-responsive polymer brushes-grafted gigaporous polystyrene microspheres as a high-speed protein chromatography matrix[J]. Journal of Chromatography A, 2016, 1441: 60-67. DOI:10.1016/j.chroma.2016.02.072.
[27]
FAN F B, WANG L C, LI Y J, et al. A novel process for the preparation of Cys-Si-NIPAM as a stationary phase of hydrophilic interaction liquid chromatography (HILIC)[J]. Talanta, 2020, 218: 121154. DOI:10.1016/j.talanta.2020.121154.
[28]
LI Z Y, LI S X, ZHANG F F, et al. A hydrolytically stable amide polar stationary phase for hydrophilic interaction chromatography[J]. Talanta, 2021, 231: 122340. DOI:10.1016/j.talanta.2021.122340.
[29]
CAI J F, CHENG L P, ZHAO J C, et al. A polyacrylamide-based silica stationary phase for the separation of carbohydrates using alcohols as the weak eluent in hydrophilic interaction liquid chromatography[J]. Journal of Chromatography A, 2017, 1524: 153-159. DOI:10.1016/j.chroma.2017.10.005.
[31]
MORAVCOVÁ D, ČMELÍK R, KŘENKOVÁ J. Separation of labeled isomeric oligosaccharides by hydrophilic interaction liquid chromatography: the role of organic solvent in manipulating separation selectivity of the amide stationary phase[J]. Journal of Chromatography A, 2021, 1651: 462303. DOI:10.1016/j.chroma.2021.462303.
[32]
TANG T F, GUO D D, HUANG S H. Preparation and chromatographic evaluation of the hydrophilic interaction chromatography stationary phase based on nucleosides or nucleotides[J]. Analytical Methods, 2021, 13(3): 419-425. DOI:10.1039/d0ay02016h.
[34]
CHU C H, LIU R H. Application of click chemistry on preparation of separation materials for liquid chromatography[J]. Chemical Society Reviews, 2011, 40(5): 2177-2188. DOI:10.1039/c0cs00066c.
[35]
SANTOYO-GONZALEZ F, HERNANDEZ-MATEO F. Silica-based clicked hybrid glyco materials[J]. Chemical Society Reviews, 2009, 38(12): 3449-3462. DOI:10.1039/b909363j.
[36]
FU Q, GUO Z M, LIANG T, et al. Chemically bonded maltoseviaclick chemistry as stationary phase for HILIC[J]. Analytical Methods, 2010, 2(3): 217-224. DOI:10.1039/b9ay00151d.
[37]
RATHNASEKARA R, EL RASSI Z. Polar silica-based stationary phases. Part Ⅱ-neutral silica stationary phases with surface bound maltose and sorbitol for hydrophilic interaction liquid chromatography[J]. Journal of Chromatography A, 2017, 1508: 24-32. DOI:10.1016/j.chroma.2017.05.059.
[39]
POULSON B G, ALSULAMI Q A, SHARFALDDIN A, et al. Cyclodextrins: structural, chemical, and physical properties, and applications[J]. Polysaccharides, 2021, 3(1): 1-31. DOI:10.3390/polysaccharides3010001.
[43]
BROWN M U, SEONG H, MARGOSSIAN K O, et al. Zwitterionic ammonium sulfonate polymers: synthesis and properties in fluids[J]. Macromolecular Rapid Communications, 2022, 43(12): 2100678. DOI:10.1002/marc.202100678.
[44]
LIU X F, JIANG Y, ZHANG F F, et al. Preparation and evaluation of a polymer-based sulfobetaine zwitterionic stationary phase[J]. Journal of Chromatography A, 2021, 1649: 462229. DOI:10.1016/j.chroma.2021.462229.
[45]
JIANG W, IRGUM K. Synthesis and evaluation of polymer-based zwitterionic stationary phases for separation of ionic species[J]. Analytical Chemistry, 2001, 73(9): 1993-2003. DOI:10.1021/ac000933d.
[46]
JANDERA P, JANÁS P. Recent advances in stationary phases and understanding of retention in hydrophilic interaction chromatography. A review[J]. Analytica Chimica Acta, 2017, 967: 12-32. DOI:10.1016/j.aca.2017.01.060.
[47]
GUO Y, GAIKI S. Retention and selectivity of stationary phases for hydrophilic interaction chromatography[J]. Journal of Chromatography A, 2011, 1218(35): 5920-5938. DOI:10.1016/j.chroma.2011.06.052.
[49]
FARHADPOUR M, MAGHARI S, REZADOOST H, et al. A click tyrosine zwitterionic stationary phases for hydrophilic interaction liquid chromatography[J]. Journal of Chromatography A, 2020, 1621: 461045. DOI:10.1016/j.chroma.2020.461045.
[50]
CAVICCHI K, DENG G, ANGEL J. RAFT copolymerization of ionic monomers towards diverse functional materials[J]. Abstracts of Papers of the American Chemical Society, 2018, 256.
[51]
TRUONG N P, JONES G R, BRADFORD K G E, et al. A comparison of RAFT and ATRP methods for controlled radical polymerization[J]. Nature Reviews Chemistry, 2021, 5(12): 859-869. DOI:10.1038/s41570-021-00328-8.
[52]
LAMCH Ł, WITEK K, JAREK E, et al. New mild amphoteric sulfohydroxybetaine-type surfactants containing different labile spacers: synthesis, surface properties and performance[J]. Journal of Colloid and Interface Science, 2020, 558: 220-229. DOI:10.1016/j.jcis.2019.09.100.
[53]
XU D Y, WEI H B, ZHEN Y X, et al. Carboxylate phosphabetaine as a bifunctional organocatalyst for the intramolecular ring opening of oxetane[J]. Organic Chemistry Frontiers, 2019, 6(10): 1681-1685. DOI:10.1039/c9qo00304e.
[55]
FARHADPOUR M, MAGHARI S, REZADOOST H, et al. A click tyrosine zwitterionic stationary phases for hydrophilic interaction liquid chromatography[J]. Journal of Chromatography A, 2020, 1621: 461045. DOI:10.1016/j.chroma.2020.461045.
[56]
LI S X, LI Z Y, ZHANG F F, et al. A polymer-based zwitterionic stationary phase for hydrophilic interaction chromatography[J]. Talanta, 2020, 216: 120927. DOI:10.1016/j.talanta.2020.120927.
[57]
QIAO L Z, YU C M, SUN R T. Preparation and comparison of three zwitterionic stationary phases for hydrophilic interaction liquid chromatography[J]. Journal of Separation Science, 2020, 43(6): 1071-1079. DOI:10.1002/jssc.201901087.
[58]
SONNENBERG R A, NAZ S, COUGNAUD L, et al. Comparison of underivatized silica and zwitterionic sulfobetaine hydrophilic interaction liquid chromatography stationary phases for global metabolomics of human plasma[J]. Journal of Chromatography A, 2019, 1608: 460419. DOI:10.1016/j.chroma.2019.460419.
[59]
SANTARELLI X, CABANNE C. Mixed mode chromatography: a novel way toward new selectivity[J]. Current Protein and Peptide Science, 2019, 20(1): 14-21. DOI:10.2174/1389203718666171024121137.
[60]
HALFPENNY A P, BROWN P R. Mixed mode chromatography via column switching for the simultaneous HPLC analysis of lonic and non-lonic nucleic acid constituents[J]. Chromatographia, 1986, 21: 317-320. DOI:10.1007/bf02311602.
[62]
JANDERA P, URBAN J, ŠKEŘÍKOVÁ V, et al. Polymethacrylate monolithic and hybrid particle-monolithic columns for reversedphase and hydrophilic interaction capillary liquid chromatography[J]. Journal of Chromatography A, 2010, 1217(1): 22-33. DOI:10.1016/j.chroma.2009.09.041.
[63]
SI T T, WANG L C, ZHANG H X, et al. A novel approach for the preparation of core-shell MOF/polymer composites as mixed-mode stationary phase[J]. Talanta, 2021, 232: 122459. DOI:10.1016/j.talanta.2021.122459.
[64]
LIU D L, WANG H Y, LIANG M Y, et al. Polymerized phosphonium ionic liquid functionalized silica microspheres as mixedmode stationary phase for liquid chromatographic separation of phospholipids[J]. Journal of Chromatography A, 2021, 1660: 462676. DOI:10.1016/j.chroma.2021.462676.
[65]
DE CASTRO FERREIRA C, GAMA M R, DA SILVA G S, et al. Synthesis and evaluation of a pentafluorobenzamide stationary phase for HPLC separations in the reversed phase and hydrophilic interaction modes[J]. Journal of Separation Science, 2018, 41(20): 3855-3862. DOI:10.1002/jssc.201800522.
[66]
FAN C, LIU B, LI H, et al. N-Vinyl pyrrolidone and undecylenic acid copolymerized on silica surface as mixed-mode stationary phases for reversed-phase and hydrophilic interaction chromatography[J]. Journal of Chromatography A, 2021, 1655: 462534. DOI:10.1016/j.chroma.2021.462534.
[67]
PENG H J, WANG X, PENG J D, et al. Preparation and evaluation of surface-bonded phenylglycine zwitterionic stationary phase[J]. Analytical and Bioanalytical Chemistry, 2018, 410: 5941-5950. DOI:10.1007/s00216-018-1211-7.
[68]
SI T T, WANG S, ZHANG H X, et al. Design and evaluation of novel MOF-polymer core-shell composite as mixed-mode stationary phase for high performance liquid chromatography[J]. Microchimica Acta, 2021, 188: 1-9. DOI:10.1007/s00604-021-04738-9.
[69]
REN X J, HU C X, GAO D, et al. Preparation of a poly (ethyleneimine) embedded phenyl stationary phase for mixed-mode liquid chromatography[J]. Analytica Chimica Acta, 2018, 1042: 165-173. DOI:10.1016/j.aca.2018.09.049.
[73]
LI R P, ZHANG Y, LEE C C, et al. Development and validation of a hydrophilic interaction liquid chromatographic method for determination of aromatic amines in environmental water[J]. Journal of Chromatography A, 2010, 1217(11): 1799-1805. DOI:10.1016/j.chroma.2010.01.049.
[74]
ZIOBROWSKI P, ZAPAŁA L, ZAPAŁA W. Studies on the retention behavior of quercetin, phenol, and caffeine as test substances on selected neutral and charged hydrophilic interaction liquid chromatography stationary phases[J]. Separation Science Plus, 2022, 5(7): 267-274. DOI:10.1002/sscp.202200027.
[75]
GUO Y, BHALODIA N, FATTAL B, et al. Evaluating the adsorbed water layer on polar stationary phases for hydrophilic interaction chromatography (HILIC)[J]. Separations, 2019, 6(2): 19. DOI:10.3390/separations6020019.
[77]
KARTSOVA L A, SOMOVA V D, BESSONOVA E A. Determination of zoledronic acid and creatinine by hydrophilic chromatography[J]. Journal of Analytical Chemistry, 2021, 76: 221-225. DOI:10.1134/S1061934821020106.
[78]
ALPERT A J. Effect of salts on retention in hydrophilic interaction chromatography[J]. Journal of Chromatography A, 2018, 1538: 45-53. DOI:10.1016/j.chroma.2018.01.038.
[80]
ZHAI X C, ZHAO H T, ZHANG M, et al. New stationary phase for hydrophilic interaction chromatography to separate chitooligosaccharides with degree of polymerization 2-6[J]. Journal of Chromatography B, 2018, 1081: 33-40. DOI:10.1016/j.jchromb.2018.02.024.
[81]
ČESLA P, VAŇKOVÁ N, KŘENKOVÁ J, et al. Comparison of isocratic retention models for hydrophilic interaction liquid chromatographic separation of native and fluorescently labeled oligosaccharides[J]. Journal of Chromatography A, 2016, 1438: 179-188. DOI:10.1016/j.chroma.2016.02.032.
[83]
YAN J, SHI S S, WANG H W, et al. Neutral monosaccharide composition analysis of plant-derived oligo-and polysaccharides by high performance liquid chromatography[J]. Carbohydrate Polymers, 2016, 136: 1273-1280. DOI:10.1016/j.carbpol.2015.10.028.
[84]
FU Q, LIANG T, LI Z Y, et al. Separation of carbohydrates using hydrophilic interaction liquid chromatography[J]. Carbohydrate Research, 2013, 379: 13-17. DOI:10.1016/j.carres.2013.06.006.
[86]
JANDERA P. Stationary and mobile phases in hydrophilic interaction chromatography: a review[J]. Analytica Chimica Acta, 2011, 692(1/2): 1-25. DOI:10.1016/j.aca.2011.02.047.
[87]
FU X Q, CEBO M, IKEGAMI T, et al. Separation of carbohydrate isomers and anomers on poly-N-(1H-tetrazole-5-yl)-methacrylamidebonded stationary phase by hydrophilic interaction chromatography as well as determination of anomer interconversion energy barriers[J]. Journal of Chromatography A, 2020, 1620: 460981. DOI:10.1016/j.chroma.2020.460981.
[88]
SHENG Q Y, SU X D, LI X L, et al. A dextran-bonded stationary phase for saccharide separation[J]. Journal of Chromatography A, 2014, 1345: 57-67. DOI:10.1016/j.chroma.2014.03.076.